
VARIATIONAL PROBLEM OF OPTIMUM HEAT REMOVAL 

IN RADIAL-TYPE UNITS 
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The problem of organizing radial heat removal in a radial-type unit is solved 
by using a linearized model of the continuous longitudinal-transverse filtra- 
tion of a fluid in an annular bed with an internal heat source. 

Process units of the radial type offer a broad range of potential benefits. The effi- 
cient scheme employed for pumping the reactant (coolant) through the bed in such units [i] 
is the main reason for their relatively low hydraulic resistance, good weight-size charac- 
teristics, stable heat and mass transfer, and low recharging costs. Lateral feed of the 
fluid (gas) into the unit makes it possible to alleviate the effect of adverse hydrodynamic 
phenomena - stagnant zones, choking, and the valve effect - on working processes occurring 
in the bed. 

These advantages have helped expand the range of application of radial-type units to 
power generation, chemical and heat engineering, and purification. 

Of the many types of such units, we choose to study a class of heat-generating units 
(Fig. i) in which ejection of fuel from the combustion zone is the main source of contamina- 
tion of the environment in accidents. This class of units includes nuclear reactors and 
some chemical reactors. 

In designing a unit of the above-described type, we considered the need to depart from 
the traditional approach of striving for maximum efficiency. Instead, we wanted to concen- 
trate on increasing the amount of energy in the system. In this case, the volume of the 
"combustion chamber" and, thus, the amount of fuel in it per unit of capacity would be mini- 
mal. The bulk form of the fuel eliminates problems connected with its frequent replenish- 
ment. Our main goal in designing the heat-releasing unit was to reduce possible losses 
from ejections of fuel during accidents. 

i. Formulation of the Problem. In order to organize heat removal in units of the 
above type, it is necessary to determine the through sections of the channels, the form 
of the end surfaces, the rate of flow of the coolant, and its temperature at the outlet 
of the unit so as to maximize the limiting thermal load for given dimensions of the unit, 
pressure losses, and spatial characteristics of the field of energy release. 

We will solve the problem on the basis of a two-dimensional model of the continuous 
longitudinal-transverse motion of a coolant [2]. In this model, the streamlines in the 
heat-releasing bed are represented by a trinomial 

X* = X -1- ~ (X) (f  - -  R1) -}- ~ ( % ~  (r - -  R1) z. 
R 2 - - ~ 1  

The m o d e l  e q u a t i o n s  a r e  a c c u r a t e  t o  w i t h i n  s e c o n d - o r d e r  i n f i n i t e s i m a l s  o f  a a nd  b .  We w i l l  
maintain the same degree of accuracy in our calculations. 

The heat-releasing bed of the unit consists of monodisperse spherical particles; the 
particles are kernels, covered with a thin protective shell in which energy is generated. 
Heat exchange between the bed and the fluid flow is described by the criterional equation 
[3] 

Nu = 0.395 Re ~ Pr ~ ( 1 )  
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Fig. i. Basic diagram of a heat-generating 
process unit of the radial type: i, 2) distri- 
buting and outlet valves; 3) displacement 
rod; 4) reflecting grates; 5) body (shell); 
6) heat-releasing bed; 7) end surfaces. 

An excessive increase in the specific energy release leads either to rupture of the shell 
from thermal stresses or to exceeding of the limiting temperature of the particles [4]. 
The latter may in turn lead to melting, an intolerable increase in the permeability of the 
shell and the release of fission fragments, an increase in the chemical activity of the 
materials of the core and the shell, and several other negative effects. These factors 
must be eliminated in the organization of heat removal. 

We will assume that the flow is quasiisobaric [(Pl0 - PiL)/PI0 ~ 1] and that the heat 
function is given: 

d e f  

I - - I ( T ;  P ) ~ I ( T ;  P ~ o ) = ~ ( T ) ,  

while the thermal conductivity, dynamic viscosity, and Prandtl number obey power relations: 

= )~o (I/Io)v; P = ~o(I/Io) ~; 
(2) 

d e f  

c = 0 , 3 9 5 P r  ~  = Co(I/IJ. 
Solving the unidimensional heat-conduction equation for a two-layer sphere with standard 
boundary conditions [4] with allowance for (I) and (2) and the results in [2], we find the 
temperature field inside a particle; its maximum value is equal to 

where 

I : C + Bq + -Aqd z, (3) 

-C : ~-~  ([o - - A  - -  aB - -  bC); 

~ =  

M 1 - -  

2~rM1 )-~176176162 [ 1 ]o--A 

- -  a '  ( r  - -  R~)  R 2  - -  R I  ( r  - -  R~ )  ~ ; 

= d=~~ ]o.~4" 2d 
6 (1 --  s) ~oCoI~ 64* -v -~  3 (1 - -  e) j 

1 1 

2 T  + -U-  (1-~) 
12(l--e)d ; C p2gRI(MI)-~2r(r--R2) 2.-ac/ox dr; 

- , 2 -  e, 

B:2n(MI) -lj~" r O-~q (r--ROdr; A=2~(MI) -ljfrqdr; 
OX R~ R~ 

kaF 2F 4FZ v ~ , ~ J  2 D  F 1 

(0.64t['~ - -  ? - -  e) (aB + bC) 
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k - -  1.7(1 --s) ~1.2 0.145 o.a22 2Fi ; = (A/D),.2 ; D I =  
sad u ( R i  + ~ / R ,  Fin )" 

Using the equations of the theory of elasticity [5] in an approximation in which the 
thermal expansion is assumed to be spherically symmetric, we determine the normal components 
of the stress tensor in the particle. We find that Trr reaches its maximum value at the 
center (this is the compressive stress), while T~reaches its maximum value on the outside 
surface of the shell and leads to its stretching_ This quantity is calculated from the 
formula 

s = C + Bq + Aqd 2, ( 4 ) 

where 

= c g ;  

1 

"$-- 288 (1 - -~ )  

W -  _ 

r=(-- 

V + -  

16~- 

24 ~ W+ - -  1 ~-------~ 

[ ( / ........ ] 
v+a2 5_i5_ + 1  1~___=__- 7 +-ffD-v- (1 + 2 > '  N~) ; 

72~I+F E__~__ ) - 1 + ~ .  1- -21~ 1, 1 ----2; ..... ; 

{ E r, E e i - i _  

E E 

ill +2 +2>' x 1 - - 2 ~  / , 1 - - 2 f f  , 1 + ~ 1 + ~  , 

r E )+ )] 

We will assume that, from the strength viewpoint, the bed is capable of functioning if the 
integrity of the shells covering the particles has not been disturbed. Here, the condition 
of the particles themselves is unimportant. Then the two conditions which limit the energy 
release will have the form 

def _ def 

( t - - P )  = ~ < o ;  (s--S) = ~ o ,  (5)  

w h e r e  t and  s a r e  d e s c r i b e d  by Eqs .  (3 )  and  ( 4 ) .  

A system of differential equations of heat removal, solved relative to the derivatives, 
was presented in [2]. Since the right sides of these equations are cumbersome, we will 
agree that the following quantities are equal: 

Yi = Gi; Y2 = G~; g3 = u; V~ = a; 95 = b; 

Y~ = P1; !fv = P.,,; q : (, q > 6(0;  < q > : const; 

t / s - -  ( q >  ; Y17--:F,; Yxs '=F2; y,.----FI; go_o=F~ 

and we will represent the system in generalized form 

v, = h (x; v,; ...; v,.,o) ( i - -  1, 8), 

(6)  

(7) 

formally reasoning that the right sides of Eqs. (7) depend explicitly on all of the unknowns 
(Yl; .-.; Y20); we adopt the same position in regard to ~, ~, Y, and all of the functions, 
which we will henceforth designate through the letters f, w, ~, and 9. According to (6), 

y~ = v , ,+o-  aY,~ 0Y,, f~ ' - L; 
OX OlJi 6]tj~ ( 8 ) 
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Y ~ = f s = 0  (i=]] 26; i ~ 1 7  A18); k = 1 7  A18. 

I n f o r m a t i o n  on Y( . )  and the  unknowns Ys; . . . ;  Yi0 w i l l  be p r e sen t ed  in the  course  of the  
solution. 

From [2] we take boundary conditions that are consistent with the problem formulated 

above: 

Y~ ]x=~ = O; Y2 ]x=L_~ = O; Y n  lx=~ = O; Yls lx=L_L = O; 
( 9 )  

Y~Ix=L-~ = 0; Y6 Ix=o -- P~0; Y7 [x=L = P i L ;  Yllx=o = Y2 Ix=z. 

Let us point out the limitations on the through sections of the channels and the fluid 
flow rates in them: 

VxEI0;Z~), E x > Y x , > 0 ,  Y x > 0 ,  Y ; ~ 0 ;  (10)  

VxC(L--Li ;  L], E ~ > Y l s > 0 ,  Yi>/0,  Y~>/0, 

which fo l low from the  requ i rements  imposed on the  dimensions of  the  u n i t  and the  k i n e t i c s  
of  coo l an t  motion.  

We will assume that we know the quantities R I ~0,_~0, c0, I0, ~, ~, e ~(T) d, 
d, ~, l +, ~ - ,  ( A / D ) I , = ,  EL ,z ,  E +, E- ,  ~+, ~ - ,  ~+, ~ '  ' ' , T, S, L, Pi0, P2L, 6(r), an~ ? = p(T). 

2. Solution of the Heat Removal Problem. Mathematically, this problem amounts to 
a search for the functions Yl; ...; Y20 that minimize the functional 

d : - - . I y 8 6 ( r ) d V  = min, (ii) 
V 

in the presence of nonholonomic constraints (7), (8) with boundary conditions (9) and limita- 
tions in the form of inequalities (5) and (i0). It follows from Eqs. (ii) and (5) that 
the extremal Y8 is positive. Thus, the requirement that the flow rates be monotonic [see 
(i0)] is equivalent to 

def 

- - A - - a B - - b C  = ~ 0 .  (12) 

This r e l a t i o n  w i l l  a l s o  be used in the  s o l u t i o n  of  the  problem. 

For nonsepa ra t ed  flow of the  c o o l a n t  ( s e p a r a t i o n  zones a p p r e c i a b l y  lower the  coo l ing  
rate), the ends of the bed should coincide with the surfaces formed at the edges of the 
trajectories of a coolant obeying the classical filtration law [2]. Since the velocity 
field is not known from the conditions of the problem, it is impossible to a priori determine 
the volume and configuration of the bed. Thus, Eq. (ii) turns out to have indeterminate 
limits of integration: 

n_. b-- 
= - -2n j- rdr j y86 (x; r)dx : rain; J 

R, h'- 

a -- L - -  [(~/~)L + (95)L ] (R~ - -  Ra) 4- (Y~)L (r - -  R,) + (Ys)L 

= (v~)o ( r - -  R, )  + (y~)o (r  - -  R, )  ~ 
R ~ -  RI 

( r  - -  R I )  ~ . 

R ~ -  R1 

(13) 

We use symmetrical unit functions to construct a functional with fixed limits equivalent 
to (13):  

R2 L 

i = --2z~ I" .t 8ys (Ho -- HI) rdrdx = min, (14) 
R~ 0 

where 
Hi= U(b--x); H~ : U(a---x); 

U('):lim 1---[ 1 ~ o  2 + err lm (')]" 
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Here and below, we use approximate expressions of U which have proven expedient in numerical 
experiments we have performed. 

Using the property of U, we separate (14) into two terms in such a way that each term 
depends only on the sought variables taken on identical edges: 

d = ~i + ~ ,  

where 

R, [(y,)o+(yDo](R,--Rt) d e f _  R2 L def__  

8 H l d x  = q~l(Y8; (Y~)o; (Ys)o; x); x =0 ;  --Y8 .[ .I 8H~rdrdx = d)~(y8; (Y~)6 (PS)L; L). 
R, 0 

Such summation makes it possible to use the Boltz-Meyer transform [6] and remove the unknown 
parameters (Y~)0,L and (Ys)0,L from under the integral sign. We will indicate the key aspects 
of this mathematical operation. We construct the functions ~1,2 with the simple substitution 
of (Y4)0 A (Y4)L = Y4, (Ys)0 A (Ys)L = Ys, x A L = x into ~i,2. We determine the total 
derivatives with respect to x from r and designate them as Yg'; Yi0'" 

def 

y ~ , , 0 -  Om,,~ 6 0m, ,~ f~=/~ ,~o ;  ( i = 4 ,  8; i ~ 6 A 7 )  �9 (15) 
Ox Oy~ 

Then we r e p r e s e n t  t h e  f u n c t i o n a l  (14)  in  t r a d i t i o n a l  form 

L 

J = ~ (f9 + fl0) dx = rain, (16) 
0 

and we add (15) to (7) with the conditions 

def _ def _ 
(Yo ~- (D1 = N1)lx=o == O; (YlO = N2)l~=o = O; 

def __ def 

(v9 = M1)I~=L = o; (Wo - -  m~ = M~)Ix=L = o. 

(17) 

Limitations (5) and (12) depend on the two running coordinates x and r, but the sought 
quantities themselves are functions only of x. This fact allows us, by discretizing Eqs. 
(5) and (12) with respect to r: 

r = r y  = R 1  - -  j ( R 2  - -  R 1 )  ; ~ J  = ~ ( f j ) ;  ~ j  = ~ ( f j ) ;  ~ . ]  = ~ ( r j ) ,  
M 

and u s i n g  them as a b a s i s  f o r  i n t r o d u c i n g  t h e  p e n a l t y  f u n c t i o n  h,  t o  change over  from ( 5 ) ,  
( 7 ) ,  ( 8 ) ,  ( 1 0 ) ,  ( 12 ) ,  and ( 1 5 ) - ( 1 6 )  t o  a v a r i a t i o n a l  problem w i t h  one i n d e p e n d e n t  v a r i a b l e  
x. We can t h e n  p roceed  to  r e l a t i o n s  ( 7 ) ,  ( 8 ) ,  ( 10 ) ,  and (15) and t h e  f u n c t i o n a l  

L 

J = S (f9 + f,o) hdx  = min, (18) 
0 

where 

M 

h = H U (-- ai) U (-- ~s) U (oi); 
]=I 

U(.)  = lim [-~--+ 1 ardgJ-(-~J - -  , 
m~O 

We wil=l construct the relations GI= YI, O2= Y2, FI=YIT, F2=YIs with an infinite domain and 
a finite set of values of the functions 

{ (lx  } 
G1 ~ = Y1 2 = lira expyl,~ ::h m + kl ~gl ~U+ [~= (x- -  XL,O)] ; (19)  

' ' m ~ 0  2 L ' ' 

{:( ;) (' F1 ~ = Y17 18 = lira '~'1_.____~2 arctgylT,ls + _ m 
' r n ~ 0  ~ 2 

L + 7,1sYlT,lsU+[+---(x--XL,o)] , 
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where 

--(')2exp [-~--(')] . 
U+(.)= 1--tim2 

m~0 

xL = f~ = L - -  [(yJL + (g~)L ]~R~-- R0; 

Xo = L - -  f2  = [(90o § (ys)ol(R2 - -  R0.  

I n e q u a l i t i e s  ( 1 0 )  a r e  a u t o m a t i c a l l y  a c c o u n t e d  f o r  w i t h  t h e i r  i n c l u s i o n  i n  t h e  m a t h e m a t i c a l  
expressions. Let us explain the functional role of each term in (19). The first terms 
keep the extremals FI, 2 and GI, 2 within the necessary interval. The second terms ensure 
the existence of finite values of Yl, Y2; YI7, Yls at the points x0, x L. Due to design 
features of the unit, the through sections of the channels and, thus, the coolant flow rates 
are zero at these points. The third terms remove the limitations of the functions FI, G2; 
F2, G 2 at x > Xh, x < x0. 

We bring boundary conditions (9) into conformity with the limits of integration (0; 
L) by resorting to linear extrapolation 

( OFt, OYI, ) d~f_ ], Y~ - k-~x + ~ fh (y~ + ys)(R~- RI) = M~,~] ~=~ = 0; (k = i A ~7); 

y~ § \( OY,,ox § OY~oy,~ [~ (Y~ + gs)(R~-- RO = N3'4 Jx=o = 0; ( n = 2 A 1 8 ) ;  

def _. 
[y~ + f~ (y~ § ys)(R~ -- R~) = N~]l~-0 = 0; 

def __ def 

(go - -  P~o = N 6 ) I ~ = o  ---- 0 ;  (b'7 - -  P2L = A45)]x=L = O. 

Then the equality of the coolant flow rates at the inlet and outlet of the unit will be 
expressed in the form 

( 2 0 )  

where 

i [ O  OY~ OY 2 (Y1 ~- Y2) ~- ~ fl ~- ~ dx - -  %llx=L - -  X21x=0 = 0, 

•  ( o~lla;'2 _~ OVl'~2O~l.2 fl.2)(ff~ ~- ffs)(R2 - -  R1). 

( 2 1 )  

The Boltz-Meyer transformation makes it possible to represent (21) as a set of additional 
nonholonomic constraints : 

�9 O• 0~41,2 ;c def 
y l l . 1 2 =  OX " ~ ' - - - , i  = fn,12; i~--~ 1, 20; i ~ 1 1 A  12; ( 2 2 )  

09i 
together with the isoperimetric constraints 

L 

+ [2 = @l. dx = 0 ( 2 3 )  
b -k  J 

and the boundary conditions 

def __ def 
( Y l l  : Nv)Ix=o = O; (gu  § • = ~I~)lx=L ---- O; 

def __ def __ 
( Y n -  • = N~)l~=o = 0; (Yl~. = MT)I~=L = 0. 

(24) 

If we use (7), (15), (18), (19), (22), and (23) to construct the auxiliary functional 
needed to solve the variational problem by the Lagrange method, we find that the integrand 
contains the sought quantities in the form of the constants x0, L. Thus, we designate them 
as YI~,I4 in (19) and consider them to be functions of x. Also, so as not to change the 
meaning of the problem, we impose two constraints 
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de[ 
YI3, 14 = fl3,1$ = 0; 

the equalities between the unknowns on the edges 

y~I;=L -- ix-- (R~-- RO(y~ + 9~)]I~=0 = 0; 

y~k=0 -- [x-- (R~-- RO(y~ + Y~)]I;=L = O, 

which would prevent us from finding suitable boundary conditions, are replaced by the equiva- 
lent relations 

L L 

f 02dx = 0; .f 03dx 
b o 

== 0; 02 = /r 03 = f16; 

de[ de[ 
Y~5 = Y[6 = 1 - -  (R~ - -  R~)([~ -[- [5) = [15 = [16; 

def de[ 
[ Y 1 5  - -  X - -  ( R ~  - -  a l ) ( ~ J ~ ,  - ' { -  JUg) = Ngl lx :o  = 0; (~/15 - -  ~ 1 3  = ~ L ) l x = L  = 0", 

de[ __ de[ 
(Yls - -  Y,a = Nlo)Ix=o = 0; [g~6 - -  x - -  ( R 2  - -  R1)(Ya -]- Ys) = NgI[x=L = 0. 

In the given case, the auxiliary functional will have the form 

L 

[ 0 - [ - C , , 0 , @ A s ( y ~ - - [ ~ ] d x = m i n ;  i = l ,  18; n =  1, 3, 
0 

(25) 

(26) 

where 

= (/9 -[- :10) h. 

Since the Eulerian system corresponding to it 

0___~ + C ~  O0,~ As 0[~ A ~ = 0 ;  i =  1, 18; k =  1, 18; 
Oyk Oyh Oyn 

a~ -[-c,  aOn A i O f i  de[__ d e [  
. . . .  M10,11 = N l l , n  = 0; I = 19, 20; 

Oy~ Oyl Oyz 

yl = fi 

(27) 

(28) 

( 2 9 )  

consists of differential and transcendental equations, and since the boundary values are 
unknown, we replace Eqs. (28) in the system by their derivatives with respect to x, solved 
relative to Y19~20'" 

Y;0 E20(Y19__ 819N de[ : f 2 0 ;  y19 e19(~20 - -  e20N def 
- -  - -  [19'~ 

N z - -  O19(~20 N 2 -- o,9~.o 
w h e r e  

S l - -  

02~ O~O~ a2[ i 

ay~ ay~ ay~ 
o2o 0 2 % . . (  020 0% ) 

- axay----~ + c~ ~ + t~ ay~ay-------T + c. ay~ay, 

a[~ ( ao A 0_~_h +c,, 0% ~ _ A~ I aV___i_~ _+ a2[~ 
Oyz Oyi oyi Oyi ] axOyz aykOyl 

N -- O2"---"'~ + C~ a20'~ A i a2[i 
OglgOy.2o Oy l~Oy2o  Oy~90Y2o ' 

a n d  we i n s e r t  E q s .  ( 2 8 )  i n t o  t h e  g e n e r a l  t r a n s v e r s a l i t y  c o n d i t i o n  

- - h ]  ; 

(30) 
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Fig. 2. Dependences of Q/V, MW/dm 3, and 

T2L, K, on the pressure drop (Pl0 - P2L), 
MPa, at Tl0 = 473 K (i, 2); on gas tem- 
perature at the inlet of the unit, K, with 

P2L = 9.2 MPa (3, 4). 

i/dj~ / -  0; 

=0 ,  

(31) 

t x 2 0Nl hi + ~ Zl ~ x=0 = 0, 

[Ndx:0  = 0 

C l o s e d  s y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s  ( 2 7 ) ,  ( 2 9 ) ,  and (3 )  w i t h  b o u n d a r y  c o n d i t i o n s  
(31)  and i s o p e r i m e t r i c  c o n d i t i o n s  (23)  and (25)  ( p a s s a g e  t o  t h e  l i m i t  m * 0 d u r i n g  t h e  s o l u -  
t i o n  of this system is accomplished by means of spline interpolation [7]) describes the 
optimum geometry of the structural elements of the unit and optimum heat-removal parameters; 
the presence of sufficient conditions for the minimum of functional (26) is checked by means 
of the test proposed in [8]. (The problem of optimizing heat removal with the condition 
of attainment of the maximum value of qQ is solved by a similar method.) 

3. Numerical Example. We will use the mathematical optimization model to determine 
the dependence of Q/~ and TgL on the pressure drop in the unit and the gas temperature T!0. 
The need for this information arises in the calculation of the thermodynamic cycle of the 
unit. The initial data: R I = 0.21 m, R 2 = 0.37 m, L = 1.0 m, ~z = 0.1385 m2 Z2 = 0.194 
m=; d = 1.8"10 -a m, d = 0.8; s = 0.4; Y = 0.5; e = 0; ~ = 0.5; c o = 0.395; k I = = 10 -7 , 
k17 = 10 -6 , kl8 = 10-4; M = 20; (A/D)z, 2 = 0.05; r =cpT; coolant - CO 2 (its properties 
were given in the handbook [9]); Pz0 = i0 MPa; %+ = i- = 21 W/(m.K); E + = 0.15.1012 N/m2; 
E- = 0.2"10 z2 N/m2; p+ = 0.24; p- = 0.27; ~+ = 0.150.10 -4 I/K; ~- = 0.178.10 -4 I/K; T = 

1700 K; g = 0 .4 4"109  N/m2; 6 ( r ) =  [ -~ - -~  2 --s 3 . 2 ( R 2 - - R 0  " The p r e s s u r e  P2L and 

t e m p e r a t u r e  T~0 were  v a r i e d  w i t h i n  t h e  r a n g e s  PgL = [ 9 . 9 ;  8 . 0 ]  MPa, T~0 = [423;  573] K. 

The r e s u l t s  o f  t h e  n u m e r i c a l  e x p e r i m e n t  a r e  shown in  F i g .  2. I t  s h o u l d  be  n o t e d  t h a t  
an i n c r e a s e  in  t h e  p r e s s u r e  d rop  in  t h e  u n i t  i s  a c c o m p a n i e d  by an i n c r e a s e  in  t h e  l i m i t i n g l y  
a l l o w a b l e  e n e r g y  r e l e a s e ,  w i t h  a t e n d e n c y  t o  r e a c h  t h e  s a t u r a t i o n  l i n e  w i t h  a v a l u e  o f  2 .37  
MW/dm3; a t  t h e  same t i m e ,  t h e  opt imum t e m p e r a t u r e  T2L d e c r e a s e s  and a p p r o a c h e s  t h e  l ower  
b o u n d a r y  o f  1450 K. Such b e h a v i o r  o f  c u r v e s  1 and 2 i s  c a u s e d  by a c h o k i n g  e f f e c t  [ 1 0 ] .  
The g r a p h s  o f  t h e  f u n c t i o n s  Q/V and T2L w i t h  t h e  a r g u m e n t  Tz0 a r e  a p p r o x i m a t e l y  s t r a i g h t  
l i n e s ;  t h e  f i r s t  q u a n t i t y  d e c r e a s e s  m o n o t o n i c a l l y ,  w h i l e  t h e  s econd  i n c r e a s e s  w i t h  a d e r i v a -  
t i v e  s u b s t a n t i a l l y  l e s s  t h a n  u n i t y  ( w i t h  an i n c r e a s e  in  Tz0 by 150 K, T2L i n c r e a s e s  by o n l y  
30 K).  

CONCLUSIONS 

The calculations show that the above-mentioned qualitative features of heat removal 
do not depend on the dimensions of the unit, the properties of the fuel, or the form of 
the energy-release field; they are intrinsic to nearly all heat-generating units of the 
radial type. This makes it possible to consider radial-type units as being among the most 
promising types of process vessels. Their introduction will have a positive effect on safe- 
ty in power engineering as a whole. 
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NOTATION 

x, r, cylindrical coordinates; R I (R2) , radius of the internal (external) lateral sur- 
face of the bed; t, temperature at the center of a particle; p, %, ~, cp, I, density, thermal 
conductivity, dynamic viscosity, heat capacity, and enthalpy of the coolant; q, volumetric 
energy release in the bed; d, diameter of a particle; d, relative diameter of the kernel 
(core) of a particle; V = ~L(R22 - Rz2); G, flow rate of gas in the channel; F, through 
section of the channel; 6, drag coefficient; A, height of roughness on the channel walls; 
D, equivalent hydraulic diameter of channel; s, shear stresses on the external surface of 
the shell of a particle; E +, E-, D+, ~-, $+, ~-, %+, %-, Young's modulus, Poisson's ratio, 
coefficient of thermal expansion, and thermal conductivity of the materials of the core 
and shell of a particle, respectively; P, gas pressure; 6(r), nonnormalized form of the 
field of energy release in the bed; T, limitingly allowable particle temperature; S, maximum 
possible shear stresses in the shell; L, length of unit; V, volume of bed; T, gas tempera- 
ture; L, length of channel; E, upper bound of the through section of the channel; M, degree 
of discretization of the problem with respect to the radius; q, efficiency of the power 
plant; u, thermal load of the flow in the outlet channel; kz,2, kzT,zs, scale factors; A, 
T, X, Lagrangian multipliers. Indices: i, parameters pertaining to the distributing chan- 
nel; 2, parameters pertaining to the outlet channel; quantities at the inlet and outlet 
of the unit are denoted by 0 and the letter L, respectively; relations valid for both the 
distributing and outlet channels have subscripts i, 2. 
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